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ABSTRACT
Drones have carriedweapons, drugs, explosives and illegal packages
in the recent past, raising strong concerns from public authorities.
While existing drone monitoring systems only focus on detect-
ing drone presence, localizing or �ngerprinting the drone, there
is a lack of a solution for estimating the additional load carried
by a drone. In this paper, we present a novel passive RF system,
namely DroneScale, to monitor the wireless signals transmitted
by commercial drones and then con�rm their models and loads.
Our key technical contribution is a proposed technique to passively
capture vibration at high resolution (i.e., 1Hz vibration) from afar,
which was not possible before. We prototype DroneScale using
COTS RF components and illustrate that it can monitor the body
vibration of a drone at the targeted resolution. In addition, we de-
velop learning algorithms to extract the physical vibration of the
drone from the transmitted signal to infer the model of a drone and
the load carried by it. We evaluate the DroneScale system using 5
di�erent drone models, which carry external loads of up to 400g.
The experimental results show that the system is able to estimate
the external load of a drone with an average accuracy of 96.27%.
We also analyze the sensitivity of the system with di�erent load
placements with respect to the drone’s body, �ight modes, and
distances up to 200 meters.
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Figure 1: DroneScale system analyzes the RF signal trans-
mitted from a drone and estimate its model and load.
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1 INTRODUCTION
There has been a signi�cant rise in drone-related mishaps in places
such as airports, residential areas, schools, prisons, borders etc.
in recent years [25]. The intentions behind these incidents can
range anywhere from naively benign to extremely fatal. For exam-
ple, Gatwick Airport of England was shutdown for more than 24
hours in late 2018, due to a drone incursion, disrupting hundreds
of �ights across the world [78]. An unregistered drone �ew over
a packed stadium during a football match causing a panic among
security o�cials [1].More serious drone incidents involve them
delivering drugs [3, 84],weapons [33], explosives [79, 85], illegal
packages [23, 57, 81] across political borders, prisons etc.Even if a
drone is registered with a unique MAC address, there exist many
software solutions to modify the address.U.S. Customs and Border
Protection has reported as many as 170 narcotic delivery attempts
using drones in the past �ve years [2]. The Border Patrol would
bene�t from knowing whether a drone is just being used for obser-
vation or is being used to smuggle goods. Similarly, there has been
a spike in reported incidents of delivery of phones, tobacco, drugs,
and weapons to prisons [3, 23, 57, 84]. Sta� at such facilities would
again bene�t by knowing whether the drone is being used for the
delivery of contraband.

Current drone monitoring systems focus primarily on drone
detection, e.g. Dedrone [24], DroneDetector [30], ARDRONIS [8],
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DroneShield [31], Falcon Shield [34], AUDS [9], ADS-ZJU [75] and
Matthan [59], localization [58], and �ngerprinting [67]. DroneScale
di�ers from these works by introducing the concept of automated
drone load estimation, providing the capability to remotely "weigh"
the drone as if on a scale. Prior work has manifested that the drone’s
transmitted RF signal contains features that indicate the presence
of a drone [59], wherein it was found that for example the drone’s
propellers generate a vibration that can be detected in the RF signal.
This intuition linking propellor dynamics with the RF signal in-
spired our work on drone load estimation. Matthan [59] and similar
software-de�ned radio-based systems can only detect drone pres-
ence, their hardware and software architectures are not su�cient
to precisely track the modulation in frequency of drone’s communi-
cation caused by external load. More importantly, DroneScale uses
frequency-based analysis to detect loads so it is more resilient to
noises compared to temporal-based analysis as in Matthan system.

In this paper, we present DroneScale, the �rst passive RF sys-
tem that is able to passively estimate external load carried by
commercial-unmodi�ed drones (unmodi�ed structure, propellers,
camera, and battery). DroneScale monitors the RF communication
signal transmitted by a drone and uses it to extract its physical be-
haviors to infer the model of the drone as well as its carried load. In
particular, DroneScale �rst passively listens to the frequency band
of interest and detects active frequencies to extract the drone's body
vibration pro�le. Next, it monitors the RF frequency variation of
the drone's signal caused by the drone's body vibrations at the 1Hz
resolution level. This is achieved using the relationship between the
drone's body vibration and the corresponding thrust force required
to carry an external load. Lastly, it estimates the drone's external
load with 100g resolution based on the drone’s vibration pro�le
with its current system’s performance. DroneScale's concept is il-
lustrated in Fig. 1. However, realizing DroneScale is a formidable
task due to the following challenges:

• External load detection of a drone is an unexplored problem. It
is unclear what the unique signatures are, in order to detect the
load carried by a drone.

• The vibration of a drone creates millimeter amplitude vibrations
which generate a few Hz of RF frequency shifting of the drone
signal. These signals are buried under the noise level due to the
high phase noise and �icker noise of existing RF architectures.

• Existing RF architectures, due to baseband downconversion ap-
proach and ADC architecture, are not designed to monitor signals
at low frequencies at which drone signals appear (<1 kHz).

• The monitored signals include noise from the environment. Sepa-
rating them is a challenging task that requires thoughtful design
algorithms to make the system perform reliably.

• It is unclear how parameters such as distance, load placement,
�ight modes, etc. are going to a�ect the accuracy of DroneScale.

Contributions. We make the following contributions. (1) We
identify the relationship between the speci�cations of a drone and
its body vibration pro�le. (2) We identify the model of a drone and
the load carried by it based on its vibration signature. (3)We develop
a new RF hardware technique allowing the system to automatically
identify the best downconversion frequency to obtain the highest
sensitivity at the frequency range of interest. DroneScale is able
to monitor the RF shifting with 1Hz resolution. (4) We devise an

ESC Uplink/
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Controller
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Figure 2: Typical commercial drone control architecture and
the drone vibration sources

algorithm to characterize the drone by estimating its model and
external load. (5) We verify that the proposed system can detect the
drone load with 96.27% of accuracy. (6) We prove that the proposed
system could be used to estimate the load carried by known drones
at up to 200m distance.

2 LOAD VS. VIBRATION RELATIONSHIP
Before discussing the DroneScale system, we examine key concepts
underlying a multi-rotor drone’s vibration and observations on
the impact of external load to the drone’s vibration pro�le. This
section aims to answer the following questions: (1) Why are multi-
rotor drones the only type of drones discussed herein?, (2)Why does a
drone vibrate and what are the components that make it vibrate?, (3)
Do di�erent drones vibrate di�erently?, (4) Does carrying more load
change the vibration pro�le of a drone?, (5) What are the potential
approaches to monitor the load carried by a drone from afar?
⌅ Multi-rotor drones are so common. Drones can be made in
di�erent forms including helicopter, airplane, multi-rotor or even
a balloon. In that, helicopter and multi-rotor forms are the most
common forms of drones due to their simplicity of manufacturing.
A multi-rotor drone [53] has multiple rotors with a much simpler
�ying control mechanism compared to that of a helicopter [15,
16, 41]. Instead of changing its wing’s pitch and speed using a
complex rotor, as found in helicopters, to maintain balance and
maneuver, a multi-rotor operates by simply changing its motors’
speed, eliminating the need for any complexmechanical parts. Since
it has multiple similar rotors arranged symmetrically, a multi-rotor
can keep its balance more easily even when it carries additional
load (e.g. camera, packages). Therefore, most of today’s commercial
drones are of the multi-rotor type and the same trend is predicted
for the near future. In this paper, we focus on estimating the external
load carried by multirotor UAVs.
⌅ Typical drone components and vibration sources. The con-
trol architecture of a commercial drone consists of three main
components: (1) Flight Controller (FC) block, (2) RF communication
(RC) block, (3) Media Streaming block as illustrated in Fig. 2. While
media streaming can be optional, FC and RC blocks are required for
the drone to take o� and performmaneuvers. FC includes numerous
sensors like vision, ultrasound, IR, Lidar etc. sensors, depending
on the sophistication of the drone, but the crucial ones for smooth
�ight are the Inertial Measurement Units (IMUs), gyroscopes, ac-
celerometers, and GPS, which ensure the stability of a drone during
�ight. FC has sophisticated software to seamlessly make the sen-
sors work together. The Drone Propulsion block consists of motor

2
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Figure 3: Vibration pro�le of (a) DJI Phantom Pro 4, (b) Parrot Bebop 2, (c) Autel Robotics EVO, and (e) DJI Mavic 2 Zoom, and
(d) Parrot - ANAFI 4K Quadcopter captured by IMU sensor
controllers and Electronic Signal Controllers (ESCs) which control
reversing, braking, speed and acceleration of the motors. A typical
drone motor uses current control, through �eld-oriented control
of ESCs, to control the torque of 3-phase stepper motors with high
accuracy and bandwidth [35]. A motor controller is equipped with
a microprocessor that communicates with the RC block and FC
to control the ESC, and thereby the motor, appropriately. Drone
body motion can be classi�ed into two classes: body shifting and
body vibration [59]. Body shifting is caused by external factors
like controller signal and subsequent stabilization action of the
FC block. These vibrations tend to be in the range of few 10s of
Hz. The second type of drone body motion is body vibration. The
body of a drone is vibrating at a frequency in the range of a 100s
Hz [59], which is caused by additional forces created when the
propeller moves back and forth on the z axis as shown in Fig. 2.
The propeller creates both axial and radial vibrations along the
drone’s arms whose e�ects are manifested on the central plate
of the drone body and other critical locations, where most of the
drone’s electronic components are placed [82]. Lastly, the RC block
consists of a standard r/c radio receiver to receive pilot control
signals through a minimum of four control channels. As the RC
block is often placed close to the central plate of the drone, with its
transceiver antennas placed at the center of the drone or drone’s
legs, the drone’s body vibration a�ects the communication channel
of the drone and generates distinguishable signatures that can be
used to monitor the drone’s physical behavior (See Sec. 3).
⌅ Di�erent models of drones vibrate di�erently. Di�erent
drones have di�erent architecture (propeller size and shape, ma-
terial, length from propeller to central mass etc.) and weight that
require the drone propellers to have di�erent angular velocities
to generate su�cient thrust force for the drone to perform its ma-
neuvers (See. Sec. 4). To validate this hypothesis, we conducted an
experiment where a high quality IMU sensor (MicroStrain LORD
2DM-GX5-25 [51]) is placed at the center of mass of the drones’
bodies. The experiment is conducted on 5 common commercial
drones in the market including DJI Phantom 4 Pro [29], Parrot
Bebop 2 [61], Parrot - ANAFI 4K Quadcopter [60], Autel Robotics
EVO [10], and DJI Mavic 2 Zoom [28]. The vibrations captured by
the IMU are illustrated in Fig. 3. As can be seen in the Figure, �ve dif-
ferent drones generate varying vibration pro�les. In particular, the
main vibration frequencies of DJI Phantom 4 Pro are 95Hz, 195.2Hz,
293Hz, 395Hz and 495Hz. The main vibration frequency of Parrot
Bebop 2 is 167Hz. 108Hz, 208Hz, 312Hz, and 419Hz are the main
vibration frequencies of an Autel EVO. Next, 90Hz, 108Hz, 183Hz
and 219Hz are the main vibration frequencies of a Mavic 2 Zoom
drone. Lastly, Parrot ANAFI has 192.2Hz and 346Hz as its main

vibration frequencies. These vibrations a�ect their transmitted RF
signal. DroneScale exploits this information to detect the model of
a drone (See Sec. 6.1). One might argue that the drone might be
duped if the intruder increases or reduces the angular velocity to
change the vibration pro�le. However, increasing or reduce angular
velocity will lead to an increase or reduce total thrust force, which
pushes the drones out of its equilibrium stage. As a result, the drone
will constantly �y up or down.
⌅ Vibration pro�le of a drone changes when the drone car-
ries impacted external load. Carrying more load will require the
drone to increase the angular velocity of all propellers, thereby
increasing the vibration frequency of the drone. To validate this
hypothesis, we conducted another set of experiments where the
IMU sensor MicroStrain LORD 2DM-GX5-25 is attached to a drone
when it carries multiple loads from 50g to 600g. Starting from 100g,
we found that the drone’s vibration signature starts changing. As
an example, when the DJI carries no load and 300g load, the vibra-
tion frequency increased due to the higher requirement in thrust
force. The vibration frequency increases from 95Hz to 123Hz when
the drone carrying 300g of external load. In addition, at the fre-
quency range of 200-300 Hz, carrying 300g load resulted in 60Hz of
frequency shift. So, instead of observing at one �xed range of fre-
quency, our algorithms look at the whole vibration spectrum from
0 to 500Hz to extract the drone vibration pro�le. Similar results are
observable across the �ve di�erent drone models mentioned above.
⌅Estimating the drone’s load fromafar: Anunexplored prob-
lem. Up to this point, we establish the possibility of detecting the
model of a drone and whether it carries any impacted load. The
next problem is to do it remotely. While a camera, microphone, and
radar can o�er potential solutions, they have critical weaknesses
when applied to drone load estimation. Camera-based approaches
can be used to monitor the drone’s visual shape and architecture
to detect if it carries any additional component or not (e.g., load
container). However, the camera can’t tell whether the container is
empty or full. Microphone based approaches can be used to monitor
the sound generated by the drone when it carries additional load;
the more load it is carrying, the higher the acoustic frequency that
can be captured. However, system performance may su�er from
environmental noise and the short distance for acoustic techniques.
A radar-based solution can be applied to monitor the drone [66],
but this technique requires operation at very high frequencies (K
band andW band). In this project, we will prove that tracking drone
vibrations through the transmitted communication signal is the
most suitable solution because it supports (1) long distance sensing,
(2) its performance is more resilient to noise from the surrounding
environment, and (3) it is passive.

3

328



3 ANALYTICAL MODEL OF DRONE SIGNAL
AFFECTED BY VIBRATION

Drone vibrationmodulates its transmitted RF signal in (1) amplitude,
(2) phase, and (3) frequency. While amplitude and phase can be used
to detect drone presence, they are highly impacted by environmen-
tal noise and would be challenging to be used for high-resolution
sensing such as drone model detection or external load monitoring.
In this paper, we focus on the impact of vibration to the drone signal
in the frequency domain. We now present the relationship between
drone maneuvers, its propellers’ angular velocities, its vibrations,
and the corresponding RF variation.

3.1 Drone Maneuvers, Propeller’s Angular
Velocity, and Vibrations

⌅ Relationship between drone structure and its propeller’s
angular velocity. Drones have rotors �xed in parallel to their bod-
ies and they are placed in a square formation with equal distance
from the center mass of the drone. A drone is controlled by adjust-
ing the angular velocities of the rotors which are spun by electric
motors. The quadcopter is the most common design because of its
simple structure. In a quadcopter, there are six states, de�ned by
three position vectors b = |G ;~; I | and angles pitch (q), roll (\ ), yaw
(k ), which specify the rotation about the three axes, but only four
control inputs, the angular velocities of the four rotors l8=1:4 [71].
A drone can be controlled by multiple methods including PID con-
trol, back stepping control, nonlinear H1 control, LQR control, and
nonlinear control with nested saturation.

To stabilize the quadcopter, a PID controller is often used because
of its simple structure and ease of implementation. The general
form of the PID controller is as follows:

4 (C) = G3 (C) � G (C);D (C) =  % · 4 (C) +  �
π C

0
3g +  ⇡

d4 (C)
dC

. (1)

where 4 (C) is the di�erence between the desired state G3 (C) and
the present state G (C), D (C) is the control input, g is the control
torque, and  % ,  � , and  ⇡ are the parameters for the proportional,
integral, and derivative elements of the PID controller [27].

The interactions between the states and the total thrust T and
the torques g created by rotors are visible from the quadcopter
dynamics. T a�ects the acceleration in the direction of the z-axis
and holds the quadcopter in the air. Torque gq has an a�ect on angle
q , torque g\ a�ects angle \ , and torque gk contributes to anglek .
Assuming (G = B8=(G) and ⇠G = 2>B (G), the PID control equations
for a quadcopter are:

T = (6 + I,⇡ ( §I3 � §I + I,% (I3 � I))) (m/(⇠q⇠\ )), (2)
gq = ( q,⇡ ( §q3 � §q) + q,% (q3 � q))�GG , (3)
g\ = ( \ ,⇡ ( §\3 � §\ ) + \ ,% (\3 � \ ))�~~, (4)
gk = ( k ,⇡ ( §k3 � §k ) + k ,% (k3 �k ))�~~, (5)

where the gravity 6, the mass m and moments of inertia � of the
quadcopter are considered. The angular velocities of the rotors l8
can be calculated as follows:

l2
1 =

T
4k

� g\
2kl

�
gk
4b

;l2
2 =

T
4k

�
gq
2kl

+
gk
4b

l2
3 =

T
4k

+ g\
2kl

�
gk
4b

;l2
4 =

T
4k

+
gq
2kl

+
gk
4b

(6)

where k is the lift constant, l is the distance from rotor to central
mass, and b is the drag constant. Stable angular velocity is unique to

a drone model. Changing the angular velocities of drones will push
them out of their balance. Hence, from Eqs. 2 and 6, we can infer
that a drone’s characteristics include its mass (m), and structure
(k,l), which have a signi�cant e�ect on angular velocities of its
propellers (l1:4). In the following discussion, we will explain how
these angular velocities a�ect the drone’s body vibration.

⌅ Relationship between propeller’s angular velocity and
drone vibration. As discussed in Sec. 2, a drone’s body vibration
is generated by its propellers’ blade vibration. Hence, studying the
relationship between angular velocity of the propellers (l8=1:4) and
the drone’s body vibration frequency (5E81 ) is critical to understand
how the vibration is transmitted from the drone’s propellers to
the drone’s body. The vibration generated by propellers creates
both axial and radial forces at the motor �xtures. These two forces
are transmitted from the motor �xtures to the central plate of the
drone via the drone’s arm. This is proved in the literature with
the aid of an accurate computational model of a drone where the
spectrum of vibrations captured at the central plate of the drone is
in the range of 0-1200 Hz for propeller rotation speeds of 0-36000
rpm [82]. The combined impact of these forces on the drone body
is proven to be directly related to the drone vibration velocity EE81 ,
which is the rate of change of peak to peak displacement due to
vibration3E81 . E.Kuantama et.al [47] analyze the propeller vibration
caused due to the action of thrust force and material elasticity of
the blades. They use carbon �ber propellers with diameters of 13-
inch to do vibration velocity calculation at the propeller hub. The
vibration velocity of a 13-inch propeller varies from 0.8 m/s to
3.1 m/s with angular velocity of the propeller varying from 1000
to 5000 rpm. In addition, the drone vibration frequency can be
calculated as following: 5E81 = EE81

c3E81
(Hz). For all the calculations in

the following results we consider a 3E81 of 5mm. This is because the
value is close to the average amplitude of vibration, calculated using
an IMU[51] �xed at the center of all the drones used in this research.
Considering a 3E81 of 5mm for a drone’s body frame, caused by a
13-inch propeller, the corresponding vibration frequency can be
calculated at di�erent angular velocities as shown in Table 1 [47].
l (krpm) 2 2.5 3 3.5 4 4.5 5
EE81 (m/s) 1.1 1.2 1.4 1.7 1.9 2 2.3
5E81 (Hz) 70.02 76.39 89.1 108.22 120.95 127.32 146.42

Table 1: Rotor angular and vibration velocity caused by a
DJI’s blade

The vibration frequency spectrum of a drone in reality is much
broader and more complex due to various factors such as propeller
imbalance, phase synchronization, geometry and material of the
drone, �ight controller response etc. [47, 82] Loaded conditions, es-
pecially, would result in higher vibration frequencies due to higher
thrust force generation. Up to this point, the relationship between
drone architecture and its vibration pro�le is investigated. In the
next section, we will investigate how this vibration pro�le changes
the signal amplitude which is captured by an RF receiver.

3.2 Vibration Creates Frequency Modulation
RF communication is one of the key components of drone control,
as discussed in Sec. 2. Most of the existing drones use COTS RF for
their communication. 2.4GHz and 5 GHz are typical ISM frequency
ranges that are being used [83]. All drones used for this research
use 2.4GHz ISM frequency range.

4
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Figure 4: DroneScale System Overview
Drone vibrations create a change in displacement between it-

self and the DroneScale receiver causing a frequency shift in the
received signal of the monitoring system. Such a frequency shift
can be calculated by the following equation [65]: �5 ⇡ 2EE81

2 52 ,
where 52 is the carrier frequency, �5 is the frequency shift. Let us
assume an 5E81 of 200 Hz based on our IMU experiments. When
3E81 = 5 mm, 52 = 2.4 GHz, EE81 = c3E81 5E81 , c = 3 ⇤ 108 m/s, the
frequency shift �5 is around 50.3 Hz. This result implies that 1 Hz
of drone’s body vibration corresponds to 0.25 Hz in RF frequency
shift. This also implies that if DroneScale detects the RF shifting
at 1Hz level, it can di�erentiate drones’ vibrations that are 4Hz
away from each other. Fortunately, di�erent models create di�erent
vibration signatures as shown in Fig 3. Based on the IMU results
presented in Fig 3, we can say that an RF receiver system with 1Hz
resolution would di�erentiate the RF signals of all the drones used.

The problem becomes much more complex when we consider
how much the drone’s RF shifts due to an external load. From our
experiments we observe that carrying a 300g load generates 65.35Hz
of physical vibration frequency at the vibration band between 200-
300 Hz for a drone. The frequency shifting caused by additional load
can be calculated as follows:�5 0 ⇡ 2E0E81

2 5 , where E 0E81 = EE81+�EE81
is the vibration speed increased by load, and �5;>03 = �5 0 � �5
is the shifting frequency. So, when the drone carries 300g, the
frequency shift is 65.35 Hz. Hence, there is a 15.05 Hz di�erence
when compared with no load (50.3 Hz). Theoretically, every gram
of external load would cause 15.05/300 = 0.05 Hz of an RF shift.
Hence, a 100g of external load would create an RF shift of 5 Hz.
Again, 1Hz resolution would be ideal to di�erentiate an external
load with a 100g resolution.

4 DRONESCALE’S SYSTEM OVERVIEW
To monitor drone vibration with high-resolution using passive RF,
the receiver system needs to be able to detect the frequency varia-
tions of a 2.4GHz signal with less than or equal to 1Hz resolution
as discussed in the previous section. It is challenging to obtain such
resolution with existing RF architectures such as software-de�ned
radios. In addition, even if the RF system can monitor the RF signal
variations with extremely high resolution, it is di�cult to distin-
guish between the signal variations caused by a drone’s vibration
and other environmental noises.
⌅ DroneScale Hardware is a passive RF sensing system that is
able to detect 1Hz RF variations caused by the drone vibration.
Two key components that allow DroneScale to obtain such high-
resolution sensing include (1) a new downconversion controller and
(2) a low-noise ADC. The downconversion controller controls the
LO to downconvert the receiver to receive the signal at a speci�c
frequency band that has the highest Signal-to-Noise ratio (SNR).

Without this downconversion approach, the drone signal appears
at low frequency (<1kHz), which is buried under �icker noise. In
addition, instead of using SAR ADC architecture like most exist-
ing RF devices, DroneScale exploits ⌃ � � ADC architecture has
extremely low phase noise that can be used to capture frequency
�uctuation of the signal (See Sec. 5).
⌅ DroneScale Algorithms are designed to accurately identify
the drone model and its load based on the signal collected from
the hardware. In particular, it �rst pre-processes the data, cleans
out the noise, and then extracts the vibration signals (See. Sec. 6).
The extracted signal is transformed using a Short Time Fourier
Transform (STFT), to the frequency domain, for drone model detec-
tion, and to a mel-frequency cepstrum, for external load detection.
When the model is detected, DroneScale compares the captured
vibrations pro�les using the GMM-UBMmodel with MFCC features
to estimate how much external load the drone is carrying. In the
following sections, we will discuss these components in detail.

5 RF HARDWARE DESIGN FOR
HIGH-RESOLUTION MONITORING

5.1 Noise Characteristics of RF Systems
Instead of analyzing the drone signal at the high-noise frequency
range (less than 1kHz), we downconvert the drone signal to a higher
frequency band to remove the impact of a high noise (�icker noise)
area near DC. Before discussing how this mechanism was imple-
mented, let’s discuss the characteristics of the noise experienced
in today’s RF receivers. There are several noise sources that can
compromise the sensitivity of a common RF receiver. They can be
grouped into three types based on their frequency characteristics,
namely, (1) white noise, (2) phase noise, and (3) �icker (1/5 ) noise as
illustrated in Fig. 5 (a) [44, 63, 80].

First, white noise has a �at power spectral density over the
Nyquist spectrum. Its sources include the ADC (Analog-to-Digital
Converter) quantization noise, thermal noise of the electronics, and
noise inside the MOS (Metal-Oxide-Silicon) transistors. Quantiza-
tion noise is introduced by the ADC when an analog sample is
approximated by a discrete digital value. Thermal movements of
electrons inside resistors and capacitors creates the thermal noise
of the receiver. With a high-speed ADC, which is usually employed
in existing RF receivers, the thermal noise of the sampling track-
and-hold capacitor could be a signi�cant source dominating the
white noise spectrum [63]. Noise Spectral Density (NSD) is the
quantitative metric to measure the noise �oor (white noise) of an
ADC [44]. It is de�ned as the noise power that is sampled at the
input of an ADC per unit of bandwidth (i.e. 1Hz). There are four
factors that we would need to consider when calculating NSD such
as (1) e�ective noise-free resolution (ENOB), (2) sampling frequency
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(fs), (3) full-scale signal power + 2
A<B/'8= (+A<B : root mean square

of the maximum voltage, '8= : input resistance of the ADC), and (4)
architecture of the ADC. Generally, with a Nyquist-rate ADC that
has a �at noise �oor across the Nyquist spectrum, we can calculate
NSD (dBm/Hz)through this equation:

#(⇡ = 10⇤;>6 (+
2
A<B

'8=
) +30� (6.02⇤⇢#$⌫+1.76)�10⇤;>610 (5 B/2) (7)

Second, phase noise has a lower frequency component near the
input signal and a broadband component that adds to the white
noise �oor. It is created because of the imperfection (i.e. jitter) of the
ADC’s sampling clock [12, 22]. The sampling clock jitter will spread
the input signal energy to nearby frequencies thereby reducing the
overall spectral resolution. The signal-to-noise ratio (SNR) of an
input frequency (58 ) limited by the clock jitter (C 9 ) can be calculated
through this equation, i.e. (#' = �20⇤;>6(2c 58C 9 ) [12]. Thus, with
the same clock jitter, phase noise increases with the frequency of
the input signal and vice versa.
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Last, �icker noise arises from the population and depopulation
of individual charges carrier ‘trap’ in semiconductor devices [63].
Flicker noise is dominant near DC and its PSD increases inversely
with frequency [64]. To e�ectively characterize drones, several
factors have to be considered to create a sensitive, low noise, and
high-speed RF receiver. Those factors include building a high resolu-
tion ADC and deriving a new downconversion frequency approach,
which will be discussed next.

5.2 Bringing Drone Signals to Low-noise Bands
To downconvert the signal to an intermediate frequency for further
processing, a mixer is used. A frequency mixer is a 3-port elec-
tronic circuit. Two of the ports are ‘input’ ports and the other port
is an ‘output’ port. The ideal mixer ‘mixes’ the two input signals
and the output signal frequency is either the sum or di�erence of
frequencies of the inputs: 5>DC = 58=1 ± 58=2. The three ports of a
mixer include the Local Oscillator (LO) port, the Radio Frequency
(RF) port, and the Intermediate Frequency (IF) port. The LO port
is typically driven with either a sinusoidal continuous wave (CW)
signal or a square wave signal. The relationship between input
and output frequencies is given by 5�� = |5!$ � 5'� |. A typical
downconversion operation is shown in Fig. 5 (b) (left). The �icker

noise level of a mixer is high at low frequencies of a spectrum and
decreases as the frequency increases. Common RF mixers such as
the CMOS Gilbert cell mixers can have signi�cant �icker noise
power up to 50-100KHz [48, 52]. Using traditional approach would
bring the drone signal to low IF frequency (1kHz), which is buried
under the noise �oor. Phase noise, on the other hand, increases
with frequency. High phase noise level can lower the spectral res-
olution and reduce the sensitivity of our system. As a result, we
would need to �nd the optimal location, which does not su�er from
both �icker noise and phase noise in our frequency spectrum, to
analyze frequency modulations caused by drone body vibrations as
illustrated in Fig. 5 (b) (right).

In particular, the traditional approach downconverts the RF sig-
nal to baseband before pre-processing. The LO frequency and the
RF frequency are designed to be identical. For example, to capture
drone vibration at IF frequency, a Wi-Fi transmitter that operates at
2.4 GHz can be downconverted using 2.4GHz LO frequency. How-
ever, this brings the modulated signal to DC central where the
signal is highly impacted by white noise and �icker noise of a mixer
as illustrated in Fig. 5 (a). To overcome this problem, we propose
a method to shift the frequency far away from the noisy near-DC
frequency range by adjusting the LO signal. For example, using a
2.3GHZ LO frequency helps bring the modulated signal to 1.01MHz
which is still detectable using an ADC with a sampling frequency of
2.02 MHz. However, shifting the signal too far from low frequency
bands will result in an increase of phase noise from the ADC. To
overcome this problem, our proposed system calculates an optimal
downconversion frequency (5$� ), which strikes a balance between
�icker noise and phase noise levels to increase the Signal-to-Noise
ratio of the received modulated signal. The LO is con�gured to
downconvert the received modulated signal to 5$� without prior
knowledge about manufacturing speci�cation details of a mixer
and an ADC that de�ne their noise.
5$� is calculated by the noise level (dBFS) at di�erent input signal

tones using SNR degradation theory [6]. In the current setup, drones
are streaming data to the remote control with 4MHz bandwidth.
The starting point of the spectrum (53A>=4 ) is used to con�gure the
LO. In addition, the 5$� of our receiver architecture is at 25kHz.
Hence, the LO is con�gured to operate at 5!$ = 53A>=4 + 25kHz.
From the above theory 5!$ can be formulated as:

5!$ = 53A>=4 + 5$� (8)

5.3 ADC Architecture for Drone Monitoring
While the mechanism mentioned above brings the drone signal to a
low-noise band for analysis, the captured signal is still buried under
the noise �oor of conventional high-speed ADCs used by most
current RF receivers. We now discuss how sigma-delta ADC archi-
tectures should replace existing successive-approximation (SAR)
architectures for high resolution (i.e., <= 1Hz) RF monitoring.

There are three popular ADC architectures for data acquisition
in the market, namely (1) pipelined, (2) successive-approximation
(SAR), and (3) sigma-delta (⌃ � �), as shown in Fig. 6 (a) [46].
Pipelined and SAR ADCs o�er high sampling rate and are widely
used in RF receivers. However, to trade o�with their high sampling
rate, they tend to have low resolution and high noise �oor. From
our in-lab experiment, these factors can directly compromise the
spectral resolution and the ability to capture the variations in a
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Figure 6: ADC architectures
drone’s vibration with external loads, which are typically at low
frequency (i.e. < 1:�I). To overcome this challenge, we employ
the sigma-delta architecture, which has high resolution and low
noise �oor. In a sigma-delta ADC, low noise is achieved by utilizing
oversampling, noise shaping, digital �ltering, and decimation as
illustrated in Fig. 6 (b) [20]. As mentioned in Sec. 5.1, white noise is
spread out uniformly over the Nyquist spectrum. Hence, oversam-
pling widens the Nyquist spectrum, thereby, reducing the white
noise energy in the spectrum of interest. A noise shaping function,
i.e. Sigma-Delta modulator, is then applied to the signal to shape
the noise function so that most of the noise energy is shifted to the
high frequency of the wider Nyquist spectrum leaving a low noise
energy in the spectrum of interest. This noise level is then removed
by a digital �lter. The signal is decimated to the required sampling
rate before outputting the results. Additionally, Sigma-Delta archi-
tecture also provides with higher bit-resolution (i.e. 24-32 bits) than
SAR or Pipelined counterparts further reducing the e�ective noise
�oor. The main disadvantage of the Sigma-Delta architecture is the
low sampling rate due to the additional processing required for
noise shaping and modulation functions. Thus, our signals need
to be shifted to a low frequency range to be e�ectively captured.
For a sigma-delta ADC with noise shaping modulation, the noise
�oor of the spectrum of interest is also relatively �at. Thus, it is also
applicable within that spectrum. For example, we see that the aver-
age noise �oor of a high-speed sigma-delta ADC ADS1675 (+A<B =
4.24V, '8= = 400 Ohm, 5 B = 4MHz, ENOB4"�I = 17.06) employed
in our design could be as low as -150.94 (3⌫</�I). In Sec. 7.1, we
show that our customized hardware can achieve much lower noise
�oor than USRP devices. Hence, it enables the ability to capture
1Hz vibrations which is not possible with USRPs.

5.4 DroneScale Prototype
We implemented the system as shown in Fig. 7 using a Texas In-
struments TI ADS1675 4MSPS, 24-Bit Analog-to-Digital Converter,
Delta-Sigma architecture. This is a high-speed, high-precision analog-
to-digital converter using an advanced delta-sigma (�⌃) architec-
ture, and performs up to 4MSPS with high AC performance and
DC accuracy. We use a Pasternack band pass �lter VBF-2435+ from
Mini-Circuit that allows 2.340-2.530 GHz to pass through with an
insertion loss 1.61 dB at 2.440 GHz and VSWR is 1.35:1. A Double
Balanced Mixer PE86X1020 is used for mixing the upcoming signal
and the LO. This mixer utilizes Schottky Ring Quad Diodes with
optimized balun structures. The signal is captured using an Ettus
LP0965 antenna which operates from 850 MHz to 6.5 GHz for short
distance and in-lab experiments. For �eld testing, we use a Paster-
nack PE51049 19 dBi 2.4 GHz directional antenna. Subsection 7.1

ADC 
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LO

Freq. ScannerProfiling 
Antenna

DroneScale PrototypeFigure 7: DroneScale prototype

describes the system performance and its ability to track 1Hz varia-
tion in details. Moreover, DroneScale has to know what the active
frequency of the drone’s communication signal is. While some
drones use COTS Wi-Fi transceivers for communication, which can
be captured through preambles that are publicly broadcast, other
drones like DJI implement their own pre-established connection
between the drone and its controller where their preamble can’t
be seen. We exploited a software-de�ned radio hardware solution
where the device scans across di�erent spectra to identify the active
frequency and provides the value of 53A>=4 in Eq.8.

6 DRONE MODEL AND LOAD ESTIMATION
ALGORITHMS

In this section, we discuss the signal pre-processing techniques that
allow the system to remove noise and only focus on the region
of interest. We then explain the features used to detect the model
and external load of the drone. Lastly, we present the details of
the learning algorithm that was developed to realize that idea. The
signal is passed through a band-pass �lter to remove the unexpected
noise. A drone’s RF signal is classi�ed in two stages, with the �rst
stage being its model detection and the second stage being its
external load estimation. Doing a 2-stage classi�cation is necessary
because each drone model has a unique vibration pro�le, as shown
in Fig. 3, and as a result each drone’s vibration pro�le varies in
a unique way depending on its model and physical construction
when additional load is added.

6.1 PCA Dimensionality Reduction with STFT
Features for Model Detection

From observing the vibration pro�les of di�erent drones in Fig 3,
we notice that only a handful of points in a wide vibration spectrum
help us to classify the drones’ vibration pro�les from each other.
Hence, eliminating the features which remain the same in all of the
RF signal samples would simplify the classi�cation task. Principal
Component Analysis (PCA) helps in eliminating such redundant
features e�ectively, thereby improving classi�cation e�ciency. We
use Short Time Fourier Transforms (STFT) of the time series data of
the drone signal captured by our sensitive receiver system. STFTs
are windowed such that each sample consists of 10240 datapoints
which capture the frequency shift of a drone’s signal due to its
body vibration with enough resolution, as discussed in Sec.3.2, on
a time-frequency scale. Each datapoint is intended to be a feature
that is used for the classi�cation. To get a well-represented dataset
that captures the variance in a high dimensional feature space
like such, we need a massive sample size which is not practical
for our application. Such a disproportion between the sample size
and number of features in a dataset will lead to sparsity in the
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Figure 8: PCA output for model estimation using 3/85 fea-
tures for representation

dataset when projected in a high dimensional space, popularly
known as the curse of dimensionality [18]. The optimal number
of features for a sample size = lies between

p
= and =-1 depending

on the correlation between the features [43]. A general method
to determine the degree of sparsity in a dataset is to calculate
the covariance matrix ( of the dataset and examine the eigenvalue
distribution for each eigenvector of ( . A big range in the eigenvalues
of ( suggest a sparse dataset that can be optimized for features.
Covariance matrix, by nature, reduces the number of features to =.
The covariancematrix is given by: ( = 1

=�1
Õ=
8=1

Õ=
9=1 (-8�`8 ) (- 9�

` 9 )) , where -8 is the 8C⌘ feature vector, `8 is the mean of the 8C⌘

feature vector given by ` = 1
=
Õ=
9=1 G8, 9 and = is the sample size.

Next, we perform eigendecomposition of the covariance matrix
which gives us = eigenvectors and eigenvalues. The eigenvalues
calculated for the drone signal dataset in the dimension space of
order =, de�ned by = eigenvectors, suggest that more than 95% of
those dimensions are redundant (eigenvalues⇡0) when compared
with the rest. A very small number of features bear most of the
information regarding the distribution of the dataset, quanti�ed by
variance. A widely accepted dimensionality reduction method that
extends this approach is called the Principal Component Analysis
(PCA) [68]. PCA takes : eigenvectors with the highest eigenvalues
and projects the features onto a : - dimensional space de�ned by
the chosen eigenvectors with the help of a transformation matrix) .
The choice of : is made by monitoring the contribution of variance
of each added dimension to the dataset, where the variance in a
dimension is calculated using f2: = 1

=
Õ=
8=1 (G8,: � `: )2. , where G8,:

is the 8C⌘ sample in :C⌘ dimension, `: is the mean of the sample
size in the :C⌘ dimension, = is the sample size. The percentage of

variance explained by each dimension is given by: f2: (%) =
f2
:Õ:

8=1 f
2
8

.

The percentage of variance explained by a dimension becomes
less than 0.1% beyond a certain value of k, which is observed to
be the optimal selection of dimensions for a dataset. The dataset
is scaled to have zero mean and unit variance before performing
PCA so that the eigen-decomposition results are accurate. Training
and test sets were divided for a 10 - fold cross validation. The
Transformationmatrix) is derived from the training set and applied
to the test set during each fold of cross validation, after deriving and
applying an appropriate scaling matrix in a similar fashion. Fig.8
represents the distribution of the drone signal from di�erent drones
after PCA reduction, in 3 of the 85 dimensions used for classi�cation.
The data for the �gure is taken from one of the training sets used
in the 10-fold cross validation process. The 3 dimensions shown
in the �gure explain 76.3% of variance in the dataset. The other
dimensions account for 22.2% of variance. An addition of more
dimensions has no e�ect on the explained variance percentage.

Following the dimensionality reduction, we use the Random Forests
Classi�er [13] with 250 decision trees to classify the drone signal
dataset according to its model. Any standard classi�er such as
Support Vector Machines(SVM), Decision Trees, KNN etc. can be
optimized and used for the classi�cation task, but Random Forests
is chosen due to its many optimization options that strike a balance
between bias and variance of the training sets.

6.2 GMM-UBM Supervector Normalization
with MFCC Feature for Load Estimation

We utilize the Mel-frequency cepstrum (MFCC) feature to extract
the signatures of the vibration behaviors of the drones carrying
di�erent weights. We then apply the GMM-UBM supervector to
normalize the MFCC feature so that it can be classi�ed by any
learning mechanism.

Feature Extraction: MFCC is widely used in speech recognition
and music retrieval. The technique converts signal data to the Mel-
scale domain and then computes the �lter bank coe�cients. We
propose the technique of using the Gaussian Mixture Model with
the Universal Background Model to normalize the set of features
into a signal vector, named supervector, to process the data before
using a classi�er.

GMM-UBM supervector. Gaussian Mixture Model (GMM) is a
statistical approach to identify the distribution of a given data set.
Given a data set - = -1,-2, ..,-= where -8 is a feature vector, we
�nd a model using GMM that best �ts the distribution of- . GMM is
represented by a set of parameters _< = {l<, `<, ⌃<}, where l< ,
`< , ⌃< are the weight, mean and covariance of an m-th gaussian
component respectively. The probability of a sample G is a weighted
sum of" Gaussian components: ? (G |_) = Õ"

<=1 l
<6(G |`<, ⌃<),

where 6 is the Gaussian function of m-th mixture, calculated as:
6(G |`<, ⌃<) = 1p

(2c ) |⌃< | 12 )
4G?� 1

2 (G � `<) (⌃<)�1 (G � `<). A
general practice is to choose" to be 3.

Expectation Maximization Algorithm: To �t a GMM model to the
data set - , we adopt the Expectation Maximization (EM) algorithm.
According to [26], values of the parameters are updated for each
iteration as follows: l< = 1

=
Õ=
8=1 %A (< |-8 , _), the updated mean

value of m-th mixture `< =
Õ=
8=1 %A (< |-8 , _)-8/%A (< |-8 , _). In

addition, the updated variance of m-th mixture is calculated as:
(⌃<)2 = Õ=

8=1 %A (< |-8 , _)- 2
8 /%A (< |-8 , _)�`< , where %A (< |-8 , _) =

l<6 (-8 |`<,⌃<)Õ"
9=1l

<6 (-8 |` 9 ,⌃9 ) is the probability of<
C⌘-gaussian given the data

-8 and parameter set _. We apply the EM algorithm to all the train-
ing samples to generate an overall GMM, named Universal Back-
ground Model (UBM). Then, with each data sample, we adapt the
UBM model using the Maximum a Posterior (MAP) adaptation to
generate a unique GMM model for this sample set. The use of UBM
model keeps all the generated GMMs under the same scenario, thus,
reducing the outliers.
Maximum a Posteriori Estimation: Given a MFCC feature set - =
-1,-2, ..,-= and a UBM model _*⌫" , the required statistics vari-
ables including =< , ⇢< (- ), and ⇢< (- 2) can be calculated as: =< =
1
=
Õ=
8=1 %A (< |-8 , _*⌫" ); ⇢< (- ) = 1

=<
Õ=
8=1 %A (< |-8 , _*⌫" )-8 ;

⇢< (- 2) = 1
=<

Õ=
8=1 %A (< |-8 , _*⌫" )- 2

8 .
The statistical variables above are used to update the Gaussian

mixture parameters. In particular, =< corresponds to the weight
8
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Figure 9: Comparing the received signal captured
by DroneScale hardware and USRPs.

value, ⇢< (- ) and ⇢< (- 2) are used to update mean and variance
respectively: l̂< = [U<l =<

) + (1 � U<l )l<]; ˆ̀< = [U<` ⇢< (- ) +
(1 �U<` )`<]; (⌃̂<)2 = [U<⌃ ⇢

< (- 2) + (1 � U<⌃ ) ((⌃<)2 + (`<)2)
�( ˆ̀<)2] To be convenient, the value of U<l ,U<` , and U<⌃ are set to
be equal to =<

=<+A , with A being the relevance factor to avoid dividing
by 0 [70].

Support Vector Machine with modi�ed GMM-UBM kernel: Among
various approach, Support Vector Machine is the most conventional
method that optimizes a hyper-plane to e�ciently classify data.
We use GMM Kullback-Leibler divergence kernel (GMM KL) [55].
Given two GMM models _% and _& , the GMMKL kernel is de-

�ned as  ⌧"" ! (_% , _& ) = 1
2
Õ"
<=1 [(

q
l<*⌫" (⌃<*⌫" )�1/2`<% ))

= (
q
l<*⌫" (⌃<*⌫" )�1/2`<& )]. The de�ned GMMKL kernel is then

used for classi�cation.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of DroneScale’s hard-
ware and algorithms, and DroneScale’s ability to detect drone model
and load through in-lab and �eld-test experiments. The experiments
are designed to answer the following questions: (1) How sensitive
is the developed system while detecting the frequency �uctuations?
What are the accuracies when DroneScale estimates external loads car-
ried by di�erent drones? (2)What is the accuracy of DroneScale when
detecting a drone’s model? (3) Does the placement of the drone’s exter-
nal load impact the system’s accuracy?, (4) Can the system work when
the drone operates in autonomous mode?, and (5) Does the distance
impact the accuracy of the estimation?

7.1 Validation of DroneScale Hardware
Sensitivity to Frequency Variations

We conduct four in-lab experiments to assess the hardware sensi-
tivity of DroneScale to frequency variations.
7.1.1 Tracking single tone signal. Note that the low-noise region
of DroneScale hardware starts from 25kHz. 100kHz is the 5$� for
tracking a single tone signal. In the �rst experiment, an RF trans-
mitter transmits a 2400MHz signal being less than 20m away from
four di�erent receivers, namely DroneScale, USRP B210 mini, B200,
and N210-CBX daughter board. USRP’s hardware is con�gured
to listen to 2399.9 MHz frequency so that the received signal will
appear in the 100kHz area. This would help the signal visible to
USRP’s receiver because it is out of �icker noise generated by
their mixer and it is then easier to compare to DroneScale’s hard-
ware. DroneScale pro�les the signal and controls its LO to oper-
ate at 2399.9 MHz. The transmitted signal is then also shifted to
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Figure 10: Signal captured by DroneScale systemwhen there
is no frequencymodulation (top-left), 1Hz frequencymodu-
lation (bottom-left), 100Hz FM rate modulation (top-right),
and 101Hz FM rate modulation (bottom-right)

100kHz for further analysis. The received signal captured by them
is shown in Fig. 9. While N210 is not able to capture the 100kHz
single tone signal, B210 mini, B200 are able to capture 100kHz sig-
nal with extremely high phase noise. Meanwhile, the noise level
of the DroneScale’s hardware is signi�cantly lower compared to
that of USRPs. This result illustrates our system’s ability to track
the frequency �uctuations at high resolution.

7.1.2 Detecting signals that are 1Hz away from each other. In the
second experiment, the RF transmitter transmits signals that are
1Hz apart from each other including 2400 MHz, 2400.000001 MHz,
2400.000002 MHz, 2400.000003 MHz, ..., 2400.000005 MHz. The LO
operates at 2399.9 MHz to downconvert the signal of interest to the
100kHz band. Of all the four receivers, only DroneScale is able to
di�erentiate the signals that are 1Hz away from each other. B210
mini, B200, and N210 are not able to detect signals that are 1Hz
away from each other due to their high noise �oor. This con�rms
that our system is able to monitor the signal at low frequency (such
as 1kHz) while they are not observable by the USRPs.

7.1.3 Detecting RF bandwidth variation of 1Hz. In the third experi-
ment, the transmitter transmits a single tone signal at 2400 MHz
modulated by an FM modulation of 100 Hz deviation and 1Hz FM
rate. This means that the signal is �uctuating with 100Hz band-
width at the �uctuation frequency of 1Hz. Fig. 10 (top left) shows
the single tone signal when our hardware downconverts the signal
of interest to 100kHz.When the transmitter modulates the signal us-
ing FMwith 100Hz deviation and 1Hz FM rate, the captured signal is
shown in Fig. 10 (bottom left). This implies DroneScale hardware’s
ability to capture the signal �uctuation at 1Hz resolution.

To illustrate the ability of DroneScale in capturing expansion
and collapse of RF bandwidth, we conduct the fourth experiment
where the transmitter is con�gured to transmit 2400 MHz signal
with FM modulation at (1) 100Hz deviation at 100 Hz FM rate and
(2) 100Hz deviation at 101 Hz FM rate (i.e., bandwidth expansion of
1Hz). If DroneScale hardware is able to detect bandwidth expansion
of 1Hz, this implies its ability to capture 1Hz resolution of RF varia-
tions. Fig. 10 (right) shows the Fourier Transform of the received
signal in two cases. As can be seen in the Figure, the sideband of
100 Hz FM rate signal (top right) and 101 Hz FM rate signal (bottom
right) are distinguishable. This con�rms that the system is able to
monitor the bandwidth expansion at 1Hz resolution. These results
also conclude that existing USRP architecture cannot be used to
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Figure 11: (Left) DJI and Bebop vibration pro�le captured by
RF signal, (Right) Bebop vibration pro�le when carrying ex-
ternal load captured by RF signal
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Figure 12: Tested drones

track drone’s load, hence, we will not discuss their performance in
terms of load’s detection further.
7.1.4 Detecting bandwidth expansion variation caused by drone vi-
bration. In the �fth experiment, we attach an antenna of a USRP
transmitter onto the drones. This transmitter is con�gured to trans-
mit the signal at 2400 MHz. DroneScale hardware controls the
LO to shift the IF signal to the 100kHz region (i.e., LO is tuned
to 2399.9MHz) where it obtains maximum Signal-to-Noise Ratio.
Fig. 11 (left) shows the signals transmitted by the antenna when
mounted on DJI Phantom and Parrot Bebop drones, as captured by
the DroneScale hardware. The di�erence in the bandwidth of the
monitored signals captures the impact of the drones’ vibrations. We
place di�erent loads (100g, 200g) onto the Bebop drone and observe
the signal transmitted from the attached antenna. Fig. 11 (right)
shows the vibration pro�le extracted from the DroneScale hard-
ware. As can be seen in the Figure, the bandwidth of the monitored
signal is captured and can clearly be di�erentiated from each other.
This con�rms the feasibility of monitoring drone load using the
RF signal. In the following discussion, we will discuss how the
system performs with the communication signals transmitted by
the drones themselves under various conditions.

7.2 Drone’s Load Estimation Evaluation
7.2.1 Evaluation Methodology. We evaluate the system with 5 dif-
ferent models of drones, namely, Parrot ANAFI [60], DJI Phantom
4 Pro [29], DJI Mavic 2 Zoom [28], 2 ⇥ Parrot Bebop 2 [61], Autel
EVO [10] as shown in Fig. 12. Two bebop drones were used during
the experiments. As they have identical vibration pro�les, their
data is combined. All drones communicate with their controller at
2.4GHz frequency. The drones are attached with multiple precision
weights [5] mounted underneath them during �ight. Each drone
is loaded with weights in the range of 0-400g. The drone is �ying
at a distance of up to 200m from the receiver. We could not go
beyond 200m during testing due to the limitations of our testing

Figure 13: Accuracy of
model detection

Figure 14: Drone load esti-
mation accuracy-10 folds
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Figure 15: ANAFI load esti-
mation accuracy

Figure 16: Bebop 2 load esti-
mation accuracy

facility and the COVID-19 lockdowns. A drone’s body vibration
introduces frequency, amplitude and phase modulation into it’s
communication signal. As we base our system on the frequency
modulation detection, we limit the e�ects of distance. For most
commercial drones, the communication signal can be transmitted
upto 4km away from it. Because of that, we strongly believe that
DroneScale will be able to perform reasonably well for at least
hundreds of meters distance. The data is collected in a period of
2 months making for 9596 seconds of �ight data. The location of
data collection is a residential area with more than 10 active signals
being captured from Wi-Fi access points around the neighborhood
by DroneScale at all times. With a full charge, each drone could �y
for about 20 minutes. It takes around 1.5 hours to fully charge each
battery. DroneScale collects the samples at 5MHz and then down-
samples the rate to 250 kHz. The drone signal is downconverted
to 25kHz for further analysis. The band from 25kHz to 125kHz
with the lowest noise range is used to track the drone’s signal. The
dataset is populated with �les consisting of 31250 time-series data
points, amounting to 1/8C⌘ of a second each. The drones were �ying
10-15 meters away from the receiver architecture. DJI Phantom 4
and Parrot Bebop 2 were tested with two di�erent load placements,
for each load category, to test the e�ect of load distribution on the
classi�cation results. Additional data was collected for DJI Phantom
4 and Parrot Bebop 2 to do sensitivity analysis. For that purpose, DJI
Phantom 4 was also �own at a distance of 200 meters to perform the
same experiments. Similarly, Bebop 2 was �own in an autonomous
mode, using GPS, resulting in rapid variation of distance of the
drone from the receiver during �ight. The dataset is well balanced
with negligible di�erences in sample sizes of each category.
7.2.2 Drone model detection results. The �rst step implemented
in DroneScale after collecting a drone’s RF communication data is
to classify the drone according to its model before moving on to
its external load estimation. The dataset used for model detection
has 4800, 2688, 4680, 4640 and 2656 samples of RF data for Phan-
tom, Bebop, EVO, Mavic, and ANAFI drones respectively. The data
collection is done such that every combination of drone model and
external load is more or less uniformly distributed. But because
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Figure 17: Autel EVO load estimation
accuracy

Figure 18: DJI Phantom 4 Pro load es-
timation accuracy

Figure 19: Mavic 2 load estimation ac-
curacy

Figure 20: Load estimation using
di�erent algorithms

Figure 21: Estimation accuracy
at 200m distance

Figure 22: Estimation accu-
racy in autonomous mode

Figure 23: Estimation accu-
racy at di�erent placement

of the loading capabilities of Bebop and ANAFI (0-200g instead of
0-400g), we would have a discrepancy in the distribution of the
dataset when we combine the load categories for model detection.
To train the model detection algorithm (Sec 6.1), we made sure to
have a uniform distribution of 2600 samples in each model cate-
gory while making sure that every external load category is evenly
distributed in a model’s sample size. A 10-fold cross validation [13]
is run on the data to ensure the robustness of the classi�cation. The
validation process divides the dataset into 10 uniformly distributed
parts, where 9 parts are trained on while one part acts as the testing
set during each fold of validation. The results presented in Fig.13
show that the scores have a very small variance con�rming their
validity. The average accuracy score for model detection is observed
to be 97.2%, showing the robustness of DroneScale during the �rst
stage of drone’s RF signal classi�cation.
7.2.3 Load estimation results. Following the model detection of
a drone, we evaluate the drones’ RF signals to be classi�ed based
on their external loads. In this experiment, DJI Phantom 4 Pro, DJI
Mavic 2, and Autel EVO carry loads of 0-400g with a 100g resolution,
while, Bebop 2 and ANAFI carry 0-200g with 100g resolution. While
Bebop and ANAFI can carry up to 250g, 200g is a safe mounted load.
Similarly, DJI Phantom 4, Autel EVO, and DJI Mavic can carry up
to 600g, but 400g is a safe mounted load when they do not generate
abnormal behavior during �ights. We used 4800, 4680, 4640 samples
for 5 load categories of DJI Phantom 4, Autel EVO, DJI Mavic, and
2688, 2656 samples for 3 load categories of Bebop, ANAFI to train
the load classi�cation algorithm. The loads were placed underneath
these drones in all the experiments of this section. The load range
for each drone was chosen based on its speci�cations to ensure
balance and safety during �ight. A 10-fold cross-validation process
similar to the �rst stage of classi�cation is employed. The average
load estimation accuracies of ANAFI, Bebop 2, Autel, DJI Phantom
4, and Mavic 2 are 93.65%, 97.3%, 99.65%, 97.14%, 94.7%, respectively.
The scores with low variance throughout the 10 folds of validation
con�rms the validity of the results (See Fig.14). The average of the
confusion matrices from 10-folds for all the drones is presented
in Figures 15 - 19. The accuracy scores are high even when the

load estimation algorithm is implemented with classi�ers other
than SVM (See Fig. 20). More speci�cally, while Random forest
obtains 90.27% and kNN obtains only 83.5% average accuracy, our
SVM classi�cation algorithm using GMM-UBM kernel with MFCC
features obtains 96.27% accuracy. This proves the robustness of our
proposed techniques discussed in Sec. 6.2.

7.3 Sensitivity Analysis
7.3.1 Impact of distance. While the above results were obtained
when the drone is �ying with a distance less than 20m, we also eval-
uate the impact of distance between the drone and DroneScale up
to 200m with the DJI Phantom drone. This distance limit is set due
to the limitation of our testing facility and the impact of COVID-
19 lockdown on outdoor testing. Fig. 21 shows the accuracy of
estimating the load carried by a DJI drone when it is at a 200m
distance. The dataset consists of �ve load classes with near-uniform
distribution, similar to that of shorter distance experiments. The
total sample size for this experiment is 4576, which is very close to
the closer-range counterpart. The average accuracy of the 10-fold
cross-validation scores is 96.87% which shows that the impact of a
distance of up to 200m from DroneScale is negligible. This result is
promising in terms of demonstrating DroneScale’s performance in
estimating the drone’s load at distance.
7.3.2 Impact of autonomous flight mode. Most of the drones still
stream their data including video, audio, and sensor data continu-
ously to the controller even though they are in autonomous �ying
mode. To evaluate the system performance when the drone is in
autonomous �ying mode, we use the Bebop �ight planning app
to assign the location where the drone �ies back and forth dur-
ing which the drone’s RF signals are captured using our receiver
system. The other experimental conditions and classi�cation algo-
rithms remain the same as discussed in Sec. 7.2.3. Fig. 22 illustrates
the system performance when the Bebop drone is carrying up to
200g of load in autonomous �ying mode. The estimation perfor-
mance is almost similar (99.05% of average accuracy using 10-fold
cross-validation). However, this works only when the sensor status
and video streaming data is constantly being transmitted by the
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drone to its controller device. When the drone operates in a total
autonomous mode without transmitting any signal, camera/audio-
based approach can be considered as an alternative solution.
7.3.3 Impact of load placement location on a drone. We evaluate
the system with experiments where the loads are placed on the top
of a drone instead of making them hang underneath to see if there is
any impact of load placement location on the classi�cation results.
These experiments were conducted on DJI Phantom and Bebop
drones. The experiments and classi�cation were done without any
changes to other parameters discussed in Sec. 7.2.3. While Fig. 16
and 18 show the results when the drones are attached underneath
the drone body, Fig. 23 shows the average recall scores for each
category, after 10-fold cross-validation, when the loads are placed
on top of the drone. The average accuracy scores are 98.74% for
DJI Phantom and 99.13% for Bebop, a slight improvement in the
accuracy scores when compared to that of underneath loading
placement experiments. This improvement is obtained because the
load can be placed close to the central mass of the drone with top
placement. Placing load perfectly underneath the drone is often
challenging as its mounted location has to be adjusted so it doesn’t
block the drone’s sensor (e.g., landing sensor).

8 RELATEDWORK
Drone monitoring systems have attracted much attention in the
research community recently. First of all, continuous-Wave (CW)
radar systems can detect drones’ activities in di�erent frequency
bands [32, 40, 49, 76, 77]. However, the radar-based approach is (i)
sensitive to the relative orientation of drones with respect to the
radar [39, 72], and (ii) hard to classify drones’ activities from birds’
due to the weak signatures from kinetic elements of the drone [69].

Camera-based approaches have also been designed for drone
monitoring such as developing image processing method [36] or
multiple camera arrays system [4, 21, 56, 62, 73] to track drones.
However, there is no possible camera-based approach to the drone’s
load estimation. Acoustic detection methods extracting acoustic
signatures from di�erent drones are also well studied [11, 17, 38, 45,
54, 74]. Some research explores audio assisted video drone detec-
tion [14, 19, 50]. There are some intrinsic shortcomings, including
vulnerability to distance and ambient noise, and a huge variety of
acoustic drone signatures[7, 11, 42]. S. Ramesh et al. proposed a
drone and motor �ngerprint method utilizing the interplay between
motors and each of its own unique acoustic patterns [67]. This is a
promising approach that can also be leveraged for load estimation.

9 DISCUSSION
First, while the current results are encouraging, we wish to con-
duct more experiments with a wider selection of drone models as
well as more drones of the same model. The vibration pro�le of
some drone models may be similar (e.g., DJI and Autel EVO), so we
need to understand whether DroneScale’s e�cacy holds across a
broader set of models. Also, we need to understand whether there
are enough di�erences within the same model, perhaps due to man-
ufacturing variations, to a�ect DroneScale’s performance. Towards
this end, our initial experiments found a similar vibration pro�le
and classi�cation results of two drones of the same model (Bebop
2). Second, the proposed system detects load from a single drone at
a given time. Third, due to the impact of COVID-19 lockdowns, we

could not test the system in a larger area and with weights other
than precision weights. However, since DroneScale is largely based
on frequency modulation, which is highly resilient to the noise over
long distances, we are hopeful that our system will perform well
at substantially longer distances. Fourth, DroneScale current hard-
ware and software only work with unmodi�ed drones with load
detection resolution of 100g. Building a system that can estimate
load of modi�ed UAV is our next logical step, which requires our
signi�cant investigation to answer these questions. (1) which com-
ponents can we modify from a COTS drone? From our experience,
removing the camera is feasible with DJI P4, but it is impossible
with other drones like Bebop 2, Ana�, EVO, and DJI Mavic 2. (2)
What are the universal signatures across drones when they are
modi�ed? (3) How can we build a transfer learning model that
can learn vibration characteristics from a brand new drone, and
it is still usable to modi�ed drones?. Fifth, DroneScale only can
work with trained drones. However, a single drone can generate
di�erent vibrations signatures depending on the �ight conditions,
and there is no theoretical model that can calculate the vibrations
from the drone architecture. This is, in fact, an interesting research
direction where one can estimate how much vibration a drone can
generate giving its speci�c propeller length, size, materials, archi-
tecture, rotor speeds and so on. In addition, the current system
only identi�es drone spectrum from 2.4GHz to 2.5GHz. This can
be improved by using state of the art spectrum sensing systems
such as SweepSense [37]. We also do not consider �xed wing UAV
classi�cation in this paper.

10 CONCLUSION
This paper presents a novel technique to detect and estimate a
drone’s load using passive RF sensing. We discuss a new RF hard-
ware system that is able to monitor the drone signal with 1Hz
resolution, which can track a few Hz frequency variation created
by drone vibration. We conduct in-lab and �eld experiments to
validate the system using 6 unmodi�ed-drones of 5 di�erent mod-
els. DroneScale estimates drone load with 96.27% average accuracy
with 10-fold cross validation. DroneScale is also able to monitor
drone load accurately at distance up to 200m, on autonomous �ight
mode, and with di�erent load placement. Finally, as DroneScale can
track physical motion with high resolution, its hardware and soft-
ware design can be extended for other domain applications such
as tracking micro vibration of industrial machines, monitoring hu-
man vital-signs with high-precision for healthcare applications, or
precise spectrum detection in cognitive radio applications.
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